
Antikythera Publications

Database Design Note Series

Relational Database Design
http://www.AntikytheraPubs.com

sweiss @ AntikytheraPubs.com

Exploring UTF-8
Multi-script Database Series #3

Prepared by: S. L. Weiss and F. Oberle

Like it or not, Information Technology today – regardless of the type of organization
supported – is becoming more global in nature with each passing day.

Earlier technologies limited character data storage to a small subset of the letters re-
quired to record our customers’ names (as one example) – one or two Scripts at most
– but with Unicode and UTF-8 we can record those names in a way those customers
will recognize regardless of where they live or what language they speak.

Thus, among the longer term objectives for any organization with global aspirations
is the ability to store their far-flung customer’s given names as آمنة , นัฐพงษ์, Jennifer,

 りく or आदिAत्या. These, of course, are only their given names, and we may want to
store transliteration data as well (Aminah, Nattapong, Jennifer, Riku and Aditya re-
spectively), but such design considerations are not in the scope of this paper. Here
we’ll simply explain the mechanics of storing multi-Script data efficiently (UTF-8),
and why certain schema modifications need to be accomplished – thus providing
some minimal comfort level for those about to embark on the necessary upgrades,
and showing the way for other elements that will need to become Script-agnostic.

Revised for public distribution: 19 December 2016

See page 13 for information on other material from Antikythera Publications.

PGGS

Copyright © 2016 by the Authors and Antikythera Publications

Permission is granted to distribute unaltered copies of this document, so long as this is not done for com-
mercial purposes.

www.AntikytheraPubs.com

Database Design Note Series on Multi-Language/Multi-Script Databases

1. Exploring Alphabets

2. Exploring Complex Text Layout

3. Exploring UTF-8

4. Evaluating Fonts for use in Multi-Lingual Documents

5. Exploring Bidirectional Text Entry

6. Evaluating Bidirectional Text Handling Behavior in Applications

Database Design Note Series – Exploring UTF-8

DEFINITIONS AND CONCEPTS

We’ll first review some very basic terms and concepts that are often not as clearly understood as they might be. Fol-
lowing those definitions we’ll cover just enough history to allow the reader to learn why things are the way they are,
how UTF-8 is used to efficiently structure Unicode values and, finally, some ramifications to database schema design.

Language

For our purposes, we are using the word Language to mean a form of spoken or written communication between hu-
mans. The focus of this paper, however, is more on written forms, and even more on the actual Scripts used by these
forms. Further details concerning “Language” can be found in “Languages, Dialects & Countries” in the first Design
Note of this series, titled “Exploring Alphabets.”1

Script

In the context of this discussion, a Script is a collection of symbols used to write or print some subject matter. The
alphabet used to print English is a subset of Latin Script, for example. German, French and Spanish use slightly dif-
ferent subsets of Latin Script for their alphabets. German has the ß as well as various characters with umlauts (e.g.
ü); French has the ç and some letters with a variety of accents (á), while Spanish uses the ñ, which is not the same
as, nor sorted with, the n character.

The Script in use determines the order in which the characters are displayed or printed. Any of the many languages
using Arabic Script, for example, will be displayed from right-to-left. As with Languages, Scripts were covered in
more detail in “Exploring Alphabets.”

The Relationship between Language and Script

Because this paper is primarily targeted towards relational database designers, the easiest way to clarify the relation-
ship between Language and Script is to present it as a pair of Normalized Propositions:

A LANGUAGE MAY BE WRITTEN WITH ONE OR MORE SCRIPTS.

But: A Language does not always use the entirety of the Script from which its alphabet is taken, and
these Script options are not usually used simultaneously for other than educational documents.

For the record, there are a number of Languages which are commonly written in different Scripts, among
which are Serbian (can be written in Latin and Cyrillic), Azeri (can be written in Latin, Cyrillic and Ara-
bic – in which case both its characters/glyphs as well as its layout direction change.

A SCRIPT MAY BE USED WITH ZERO OR MORE LANGUAGES.

Any given Language may use all or part of one or more Scripts for its writing.

Certain Scripts are not used for Languages per se, but for specialized purposes from mathematics and
music to symbols for game pieces, diagrams, and so forth.2

Any Language in common use is, of course, a living entity. The English spoken in Great Britain, Australia and the
United States is similar, but not identical. The English written by Dickens, Shakespeare, Chaucer and the author of
Beowulf might even be considered different Languages depending on how strict a definition is applied to the term.

Characters and Character Cells

The distinction between a Character and a Character Cell must be understood when exploring any of the Unicode
Transformation Formats; that is also covered in “Exploring Alphabets” which should be read first.

1 Like the other Design Notes in this series, a pdf version of “Exploring Alphabets” is available as a fee download from
www.AntikytheraPubs.com/i18n.htm. The word “alphabet” as used in this document may be taken to include Abugidas or Ab-
jads if appropriate. These terms are also discussed in “Exploring Alphabets.”

2 See http://unicode.org/charts/ to get an idea of the wide variety of Scripts defined by the Unicode Standard.

EXPLORING UTF-8 FOR DATA STORES PAGE 3 OF 13 ANTIKYTHERA PUBLICATIONS

TABLE OF CONTENTS

Definitions and Concepts..3
Language...3
Script...3
The Relationship between Language and Script...3
Characters and Character Cells..3

Unicode (ISO/IEC-10646) Code Point Representations..4
Unicode Transformation Formats (UTF)...5

One Byte UTF-8 Representations (7 content bits): Decimal values from 32 through 127 (96 code points)..5
Two Byte UTF-8 Representations (11 content bits): Decimal values from 128 through 2,047 (1,920 code points)................................6
Three Byte UTF-8 Representations (16 content bits): Decimal values from 2,048 through 65,535 (63,488 code points).......................6
Four Byte UTF-8 Representations (21 content bits): Decimal values from 65,536 through 1,114,112 (1,048,577 code points).............6

One byte UTF-8 Representation – Details...6
Two byte UTF-8 Representation – Details...7
Three byte UTF-8 Representation – Details...7
Four byte UTF-8 Representation – Details...8

Review – Characters and Character Cells..8
Implications of UTF-8 on Database Schema Design...9

Boundary Conditions and Column Sizing...10
Back from UTF-8 to Unicode...10

Thai (Unicode Plane u+0E01-0E7F) Text Sample...11
Hindi (Devanagari Unicode Plane u+0900-097F) Text Sample..12
Hebrew (Unicode Plane u+0590-05FF) Text Sample...12

UNICODE (ISO/IEC-10646) CODE POINT REPRESENTATIONS

Unicode provides individual code points, or values, to represent up to 1,114,112 unique symbols used to write all of
the world’s present and past languages. Not all of these have yet been assigned of course, but for any language likely to
be used in today’s computer applications, this number is quite sufficient. In binary, that number is a series of twenty-
one bits: 100010000000000000000. Because computers store numbers in bytes – sequences of eight bits – this se-
ries of twenty-one bits can be represented as bytes by adding three leading zero bits to give twenty-four bits, or an
even three bytes as follows: 00010001 00000000 00000000. In hexadecimal notation that would be 0x110000.

If all our data storage and transmissions were simply converted from the one-byte characters used by early adopters of
computer technology to the three-byte character representations required to store Unicode values, text in all the
world’s languages could be reliably stored and exchanged, right? The short answer is No. A little thought will show that
data reliability can easily disappear in many circumstances.

If transmissions are interrupted, which bytes in the sequence are the first of the three used for each symbol? It might
appear that, since we’ve arbitrarily added some leading zeros, we could perhaps use those positions to indicate the
leading byte – perhaps by making that byte begin with a 1 rather than a 0. We won’t go into detail here, but some fur-
ther thought will indicate that there is no guarantee at all that some of the second and third bytes might not also legiti-
mately begin with a 1. Byte streams could easily be completely misinterpreted!

And then there is the issue of file size. Since the dawn of the computer age, most data files were produced by countries
who concerned themselves only with Latin symbols and their own character sets. One-byte-per-character was often
sufficient for two “alphabets,” but never for more than that. A conversion to three-byte representations would therefore

EXPLORING UTF-8 FOR DATA STORES PAGE 4 OF 13 ANTIKYTHERA PUBLICATIONS

result in a significant portion of the world’s data files immediately tripling in size; coupled with the higher error rates
and resulting repeat transmissions due to the drop in reliable identification of the characters, that simply wouldn’t do.
But supporting multiple character sets simultaneously was becoming more of a necessity than a desire. Enter UTFs.

UNICODE TRANSFORMATION FORMATS (UTF)
Covering the rocky path to a reasonable solution is beyond the scope of this document but, in brief, a number of at-
tempts were made to settle on some ways to “transform” Unicode bit sequences into patterns that could be reliably dis-
tinguished; these eventually became Unicode Transformation Formats, the three most prominent of which were:

• UTF-32: a fixed width format in which each symbol is stored as a four byte (32 bit) unit; UTF-32 is essen-
tially the natural twenty-two bit sequence described above extended to cover standard storage
sizes. Thus, all the issues discussed earlier are relevant. This format is also known as UCS-4, al-
though UTF-32 is actually a subset of UCS-4.3

• UTF-16: a variable length format where each symbol is stored as either one or two double-byte (16 bit)
units, and is therefore either 16 or 32 bits wide; although derived from the earlier UCS-2, it is not
the same. Many programming language libraries continue to use UTF-16 for internal storage, al-
though that is slowly changing.4 And, then, finally came …

• UTF-8: a variable length format where each symbol is stored as anywhere from one to four bytes (8 to 32
bits). Although this might initially seem unwieldy from programming or data transmission stand-
points, it is becoming recognized as the most sensible compromise between efficiency and size.

Essentially, each reduction from UTF-32 to UTF-8 represented an improvement in granularity. The remainder of
this section will be devoted solely to examples of how UTF-8 layouts correspond to Unicode point values.

Contrary to some on-line discussions, the “8” in the UTF-8 designation does not indicate that each character consists
of eight bits (one byte), but rather that each character consists of exact multiples of eight bits, i.e. complete bytes. A
UTF-8 character, as mentioned earlier, may consist of one to four bytes. A single byte UTF-8 code point representa-
tion always begins with a binary zero. The corollary is that any byte beginning with a zero bit represents a single Uni-
code symbol. These single byte characters are direct descendants of what used to be termed “lower ASCII,” and sev-
eral of the non-alphabetic characters in this range are shared among many of the world’s scripts.

The first byte of each multi-byte UTF-8 code point representation begins with one, two or three one bits in sequence
followed by a zero. The number of one bits indicates the total number of bytes that form the character – thus a byte
beginning with three one characters followed by a zero indicates the beginning of a three byte sequence, and that two
more bytes will follow to complete the representation of the code point.

Any byte beginning with a one-zero sequence is a continuation byte, and only has meaning when considered with an
initial byte, i.e. a byte beginning with two or more one bits.

This byte layout structure, while not guaranteeing data reliability during transmissions, significantly improves a sys-
tem’s ability to recover from interruptions by enabling easier synchronization of individual characters.

The tables below illustrates the construction and range of Unicode values that can be represented by the one, two,
three, and four byte Unicode UTF-8 transformation layouts:

One Byte UTF-8 Representations (7 content bits): Decimal values from 32 through 127 (96 code points)

Minimum Value Maximum Value

Unicode Binary: o010.0000
Unicode Hexadecimal: 0x20
Unicode Decimal: 32
UTF-8 Binary: 0010.0000
UTF-8 Hexadecimal: 0x20
UTF-8 Decimal: 32

Unicode Binary: o111.1111
Unicode Hexadecimal: 0x7f
Unicode Decimal: 127
UTF-8 Binary: 0111.1111
UTF-8 Hexadecimal: 0x7f
UTF-8 Decimal: 127

3 The acronym UCS means Universal Character Set, and refers to the initial attempts to represent all the Unicode code points.
4 As will become apparent, this is not sufficient to handle any Unicode code points with values higher than 2,047.

EXPLORING UTF-8 FOR DATA STORES PAGE 5 OF 13 ANTIKYTHERA PUBLICATIONS

Two Byte UTF-8 Representations (11 content bits): Decimal values from 128 through 2,047 (1,920 code points)

Minimum Value Maximum Value

Unicode Binary: oooo.o000 1000.0000
Unicode Hexadecimal: 0x0080
Unicode Decimal: 128
UTF-8 Binary: 1100.0010 1000.0000
UTF-8 Hexadecimal: 0xc280
UTF-8 Decimal: 49,792

Unicode Binary: oooo.o111.1111.1111
Unicode Hexadecimal: 0x07ff
Unicode Decimal: 2,047
UTF-8 Binary: 1101.1111 1011.1111
UTF-8 Hexadecimal: 0xdfbf
UTF-8 Decimal: 57,279

Three Byte UTF-8 Representations (16 content bits): Decimal values from 2,048 through 65,535 (63,488 code points)

Minimum Value Maximum Value

Unicode Binary: 0000.1000 0000.0000
Unicode Hexadecimal: 0x0800
Unicode Decimal: 2,048
UTF-8 Binary: 1110.0000 1010.0000 1000.0000
UTF-8 Hexadecimal: 0xe0a080
UTF-8 Decimal: 14,721,152

Unicode Binary: 1111.1111 1111.1111
Unicode Hexadecimal: 0xffff
Unicode Decimal: 65,535
UTF-8 Binary: 1110.1111 1011.1111 1011.1111
UTF-8 Hexadecimal: 0xefbfbf
UTF-8 Decimal: 15,712,191

Four Byte UTF-8 Representations (21 content bits): Decimal values from 65,536 through 1,114,112 (1,048,577 code points)

Minimum Value Maximum Value

Unicode Binary: ooo0.0001 0000.0000 0000.0000
Unicode Hexadecimal: 0x010000
Unicode Decimal: 65,536
UTF-8 Bin: 1111.0000 1001.0000 1000.0000 1000.0000
UTF-8 Hexadecimal: 0xf0000000
UTF-8 Decimal: 4,026,531,840

Unicode Binary: ooo1.0001 0000.0000 0000.0000
Unicode Hexadecimal: 0x110000
Unicode Decimal: 1,114,112
UTF-8 Bin: 1111.0100 1001.0000 1000.0000 1000.0000
UTF-8 Hexadecimal: 0xf4908080
UTF-8 Decimal: 4,103,110,784

Values below 32 in the single byte representations remain reserved – as they have always been – for control codes such
as STX and ETX, the line feed and carriage return, although the code to ring the teletype’s bell (0x07) to signify an in-
coming message hasn’t been used for many generations.5 The number of possible code points listed for each section
does not imply or suggest that all such positions (e.g. 0x7f) are valid.

In order to clarify the Unicode transformations and illustrate one drawback of the UTF-8 format, the following charts
will provide specific examples of UTF-8 representations for one, two, three, and four byte formats using several
scripts, two of which have already been introduced in this document.

The mandatory bit values for UTF-8 encoding are highlighted like this: 0 – the remaining bits form what is known as
the “payload” for the byte, i.e. the bits available for storing the actual Unicode values.

One byte UTF-8 Representation – Details

The one byte UTF-8 “transformations” are used for Unicode code points 32 (the space) through 126 (~) as well as for
the standard control characters mentioned earlier. This range is usually referred to as “Basic Latin,” but as discussed
earlier in this paper, only values from 0x41 to 0X60 (decimal 65-90: A-Z), and 0x61 to 0x80 (decimal 97-122: a-z) should
be considered as solely Latin Characters, since the others are shared by many scripts.

When pressing the A and a keys, the UTF-8 transformation is rather straightforward.

Decimal Hex Character

65 0x41 A 0 1 0 0 0 0 0 1

Character Bit Sequence:
Decimal Value of each Bit:

-
-

1
64

2
32

3
16

4
8

5
4

6
2

7
1

A = *1000001 - Note that bit 2 (32 weight) is OFF
a = *1100001 - Note that bit 2 (32 weight) is ON

97 0x61 a 0 1 1 0 0 0 0 1

5 Sort of a precursor to AOL’s infamous “You’ve got mail” message. The bell and clatter of old Kleinschmidt teletype machines
engendered a greater sense of connection with the world than anything Facebook or Twitter currently provide!

EXPLORING UTF-8 FOR DATA STORES PAGE 6 OF 13 ANTIKYTHERA PUBLICATIONS

In UTF-8 transformations, the leading 0 indicates this is a one byte character, and the final seven bits are the binary
value of the character (i.e. its “payload”). Note that the 32-value bit (bit 2) value continues to determine the case dif-
ference between capital and small Latin letters. An “A” (decimal 65) with its 32 bit set becomes an “a” (decimal 97).

Two byte UTF-8 Representation – Details

Two byte transformations are used for Unicode code points 0x0080 to 0x07ff (decimal 128-2047), and are illustrated
here with examples from the Unicode Basic Greek script block 0x0370-03ff, specifically the letters that result from
using a Greek keyboard mapping with a Latin keyboard6 and typing the same A and a keys as before.

Decimal Hex Character

913 0x0391 Α 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 This is the Greek “Alpha,” not the Latin “A”

Character Bit Sequence: - - - 1 2 3 4 5 - - 6 7 8 9 10 11 Α = *****011-10010001 (Capital Α)Capital Α)
α = *****011-10110001 (Capital Α) small α)

945 0x03b1 α 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 This is the Greek “alpha,” not the Latin “a”

In a UTF-8 layout, two consecutive leading 1 bits followed by a 0 indicates the character is two bytes long. Thus, the
two-byte Unicode hexadecimal value u+0391 is transformed to the two byte UTF-8 0xce91 value.

Basic Greek, like Latin, also uses capital and small letters and, like the Latin, these are now identified by bit 2 of the
payload, equivalent to decimal 32. The sixth through eleventh content bits are carried in the single continuation byte.

As noted above, two byte UTF-8 representations can contain Unicode code point values from 128 through 2,047.
Thus, scripts such as Hebrew and Arabic, which are assigned code values from 1,424 to 1,535 (u+0590-05ff) and
1,536 to 1,791 (u+0600-06ff) respectively, can each be represented in two UTF-8 bytes and, therefore are no longer
than the two bytes they would occupy in a straight binary representation of their code point values.

Characters in Devanagari and Thai scripts on the other hand, with assigned code values from 2,304 to 2,431 (u+0900-
097f) and 3,584 to 3,711 (u+0e00-0e7f) respectively, each of which requires only two bytes in a raw binary represen-
tation, require three bytes each in their UTF-8 transformations. This illustrates the major compromise of the UTF-8
transformation format. Scripts residing at the range boundaries approach a size that is double7 what it was without the
transformation. The implications of this on setting database column widths will be discussed later in this paper.

As a matter of interest, the N’Ko script used to write the Maninka, Bambara, and Dyula languages and variants used
in Guinea, Côte d'Ivoire and Mali, with an assigned Unicode block that ranges from 1,984 to 2,047 (U+07C0-07FF),
contains the highest value characters in two byte UTF-8 transformations.

Three byte UTF-8 Representation – Details

The lowest values requiring three byte representations in UTF-8 belong to Samaritan, a right-to-left script used in an-
cient Hebrew and Aramaic and defined in the Unicode block (u+0800-083f).8

The three byte UTF-8 representation example illustrated here uses Thai script, which is located in the Unicode Block
u+0e00-0e7f, and uses the letters that result from using a Thai TIS-820 keyboard mapping on a Latin keyboard, and
typing the same A and a keys as before.

Decimal Hex Character e 0 - b 8 - a 4 Becomes 0e-24

3620 0x0e24 ฤ 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0

Character Bit Sequence: - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3615 0x0e1f ฟ 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1

e 0 - b 8 - 9 f Becomes 0e-1f

6 Details for various means of entering these characters, including the use of Input Method Editors (IMEs) can be found in the
previous Design Note in this series: “Exploring Complex Text Layout” which should already be familiar to you.

7 These generally are not completely doubled, because of the single byte shared characters (e.g. the space) used by these scripts.
8 A form of this script is still in use by a very small group of people in the modern day Palestinian West Bank.

EXPLORING UTF-8 FOR DATA STORES PAGE 7 OF 13 ANTIKYTHERA PUBLICATIONS

Three consecutive leading 1 bits followed by a 0 indicates the character is three bytes long. There will therefore need
to be two continuation bytes, each of which must begin with 10. In this case, the two-byte Unicode hexadecimal value
U+0E24 is transformed to the three byte UTF-8 0xe0b8a4 value.

Four byte UTF-8 Representation – Details

For an example of a four byte UTF-8 representation, the table below uses symbols from the Unicode Musical Symbols
Block u+1d100-1d1ff. In this case, the equivalent decimal values for that block range from 119,040 to 119,295, each
requiring seventeen bits (three bytes if rounded up) to represent in raw binary, but four bytes when transformed into
UTF-8, another example of the increasing in size resulting from transformations near range boundaries.

Decimal Hex Character

119070 0x01d11e 𝄞 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0

Character Bit Sequence: - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

119136 0x01d160 𝅘𝅥𝅮 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

Four consecutive leading 1 bits followed by a 0 indicates the character is four bytes long. There will therefore need to
be three continuation bytes, each of which must begin with 10. As with the other examples, the seventeen content bits
are placed in the UTF-8 structure, transforming the three byte u+01d11e to the four byte 0xf09d849e transformation.

The site https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch6unicode.htm from Oracle (but not specific to
its products) provides additional and more detailed information about Unicode and its various transformation formats.

REVIEW – CHARACTERS AND CHARACTER CELLS

As mentioned earlier, this distinction was covered at length in the first Design
Note of this series (see footnote 1) but, because of its importance in dealing
with multi-lingual, multi-script systems, this section will provide a recap.

In English, we consider each character to be an independent entity occupying
its own “character cell.” When we see a line of text such as “Apple” we make
no distinction between the concept of “Character” and “Character Cell.” In
example α on the right each of the five characters that form the word Apple
has its own virtual cell.”9

But with many Scripts there isn’t a simple one-to-one correspondence be-
tween a character and a character cell. In Thai, for instance, the sentence “(I)
have four books” is “(ฉัน)มีสี่เลม่”10, Thai uses a number of “dead keys” that
occupy no character cell of their own, but are meant to be “attached” to some other character. These diacritics include
both vowels and tone markings. The first displayed cell contains the consonant ม over which the vowel ีis positioned.
The second cell contains the consonant ส with the same vowel as well as a tone mark. Only the third and fifth cells
contain a single character. What is critical to recognize, however, is that there are nine independent characters stored
on disk when this short phrase is entered (twelve if the optional personal pronoun ฉัน is included).

Along with a knowledge of the highest value Unicode character points to be handled in the database, setting the ap-
propriate sizing can be challenging if the implications of this lack of one-to-one correspondence between characters
and character cells on the sizing of columns in a database is not understood. The next section will provide some back-
ground to support basic approaches to adjusting column sizes in multi-lingual, multi-script data schemas.

9 These virtual character cells are shown here as if they were all the same size; in practice, however, that isn’t the case when pro-
portionally spaced fonts are in use.

10 For those who wish to type this sample using a Thai IME as described in the document “Exploring Complex Text Layout”, the

characters to type on an English keyboard are (C y o) , u l u j g] j , . The first person pronoun ฉัน is not re-
quired in a Thai phrase if no misunderstanding results, so that isn’t shown in example β.

EXPLORING UTF-8 FOR DATA STORES PAGE 8 OF 13 ANTIKYTHERA PUBLICATIONS

α. Latin Characters in Virtual Cells

A p p l e
In English, there are 5 characters in 5
virtual character cells.

β. Thai Characters in Virtual Cells

มี สี่ เ ล่ ม
Here there are 9 nine independent
characters in 5 virtual character cells.

https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch6unicode.htm

IMPLICATIONS OF UTF-8 ON DATABASE SCHEMA DESIGN

A segment of the SQL statement used to create the sample bt_Person base table from Chapter 8 of “Business Data-
base Triage”11 is shown here:

 CREATE TABLE bt_PERSON
 (ID NUMBER(4) NOT NULL
 , Given_Name VARCHAR2(12) NOT NULL
 , Surname VARCHAR2(12) NOT NULL continued

A number of sample entries were inserted into the bt_Person table for use in that chapter as well as in later chapters.
Similarly, a variety of Company names and other sample data were provided in similar tables. Aside from providing
some examples of how a database schema could be adapted to accommodate internationalization and localization,
there was no discussion of column sizing changes that would result from reconfiguring the database to handle names
and similar data in Scripts beyond Latin.

With the schema given above, the following statement fails, indicating that the values for the names exceed the column
sizes, even when the database has been configured to handle Unicode characters:

 INSERT INTO bt_PERSON (Capital Α)ID, Given_Name, Surname, continued)
 VALUES (Capital Α)93, 'ไดเอน์', 'โอเบอลี' continued)

Using the Oracle RDBMS, the key portion of the error message is shown below:

 ORA-12899: value too large for column ..."GIVEN_NAME" (Capital Α)actual: 18, maximum: 12)

In other words, we are attempting to stuff our six Thai characters into a column sized for twelve. The question is
twelve what? For many years, the sizing (in this case 12) was referred to indiscriminately as 12 bytes or 12 characters,
and such references can still be found today. To be fair, until relatively recently, a character always occupied one byte
in any but some very specialized databases, but that habit must be broken. Today, with the advent of multi-lingual,
multi-script databases, making that distinction is critical. In Oracle, the example we’re using here, the size of CHAR
and VARCHAR2 fields in a UTF-8 (AL32UTF8 for recent versions) database is given in Bytes, not Characters.

Knowing that we are tasked with supporting Thai characters,
and knowing that Thai characters occupy three bytes in their
UTF-8 representation, we can make an initial guess that since
Thai characters are three times the size of the Latin characters
supported by our original design, changing the column specifi-
cation to VARCHAR2(Capital Α)36) will eliminate the error. It might, but:

Thai names tend to be shorter than western names; perhaps we
could get away with only a VARCHAR2(Capital Α)32); again, maybe, but:

What was the basis of your organization’s decision to size the
Surname field as 12 bytes in the first place? Was some study of
area telephone listings or even government-provided name lists
used? Or, as we’ve often found, no one seems to know.12

Should a similar approach be undertaken for each new culture,
language, or script that now needs to be supported?

And, what about other countries (Tibet? Japan?) with which
you are now planning to do business? Even those using Scripts
that occupy three bytes per character may differ widely in the
average sizes of their Surnames – to say nothing of other lan-
guage-specific data you need to accommodate in your database.

11 See information on page 13.
12 These organizations often have different sizing for employee names, customer names, and so forth. Hobgoblin or poor design?

EXPLORING UTF-8 FOR DATA STORES PAGE 9 OF 13 ANTIKYTHERA PUBLICATIONS

☠ ☠ WARNING ☠ ☠
The VARCHAR2 used above is a “variable width” data type.
These differ from earlier “fixed width” data types to help
reduce the size of stored data. Whereas earlier CHAR(Capital Α)12)
types always allocated 12 bytes – regardless of the num-
ber of bytes stored, a variable width data type only used
what was needed for each field (up to 12 of course).

This has led to recommendations from several sources
that simply setting variable column sizes to their maxi-
mum permitted value will greatly simplify the tedious
evaluation procedures described here.

This is an ignorant and dangerous recommendation on
every level. While many details are beyond the scope of
this document, consider all of the internal (stored proce-
dures) and external (data entry forms and report writers)
applications that allocate memory based on querying the
data dictionary for the maximum size of the data ele-
ments they might expect to retrieve.

Imagine the greedy memory allocations made if only the
Given_Name and Surname columns were specified as
VARCHAR2(Capital Α)4000). Gulp! Don’t fall into this trap!

Boundary Conditions and Column Sizing

Finally, when choosing reasonable upper limits for variable strings stored in your new multi-lingual, multi-script data-
base and the applications that will utilize and support it, you need to be aware of which Scripts will require UTF-8 siz-
ing larger than their actual Unicode values would suggest.

Listing all of the potential such boundary conditions would produce a large – and most likely irrelevant – list of
scripts, and is therefore not attempted here. In Three byte UTF-8 Representation – Details on page 7 above, Devanagari
and Thai scripts were mentioned as examples of those whose Unicode values could normally be represented with only
two bytes in a straight decimal to binary conversion, but that require three bytes in their UTF-8 transformations.

BACK FROM UTF-8 TO UNICODE

An exploration of UTF-8 would not be complete without providing a few examples of how the UTF-8 sequences
stored on disk are converted back to their actual Unicode Values for use in the system.

In the next Design Note of this series, Evaluating Fonts for use in Multi-Lingual Documents, a shell script is given to
assist in such evaluations, and which optionally generates an XML (.fodt) version of a standard open document text
(.odt) file listing fonts identified by that utility. Below is a segment of a resulting file we can use as an example:

Looking at the bytes stored on disk
in their UTF-8 transformation, the
illustration on the right shows a
“hex dump” of the segment begin-
ning with 0x31 (the “1” character,
0x2E (the period/ decimal point
character), 0x32 (the “2” charac-
ter), 0x22 (the ") and so forth.

This corresponds to the highlighted
portion beginning with the last
four characters in the third line of
the file segment shown above. The
0x0A in the fifth position is a Linux
line ending; this will vary of course
for other operating systems.

Here’s how to read the Hex Dump:

EXPLORING UTF-8 FOR DATA STORES PAGE 10 OF 13 ANTIKYTHERA PUBLICATIONS

<?xml version="1.0" encoding="UTF-8"?>
< Sections between line above and line below have been removed for this example >
 office:version="1.2"
 office:mimetype="application/vnd.oasis.opendocument.text">
 <office:body>
 <office:text>
 <text:p >Now is the time for all good men to abandon CTL styles.</text:p>
 <text:p/>

 <text:p >น้ี คือ</text:p>

 <text:p >हिGनदी भाषा</text:p>

 <text:p >שפת עכרית</text:p>

 <text:p >This is some Hebrew text: שפת עכרית and it's right-to-left.</text:p>
 <text:p/>
 </office:text>
 </office:body>
</office:document>

Hex Dump segment of the Open Document Text Sample above

We’ll begin with byte 0x94A, the 0xE0 value highlighted in the tenth display row containing bytes 0x938 to 0x94B.
Since Hex Dump utilities13 simply display bytes, and neither know nor care about encoding schemes such as UTF-8,
there is no corresponding character shown for that position on the right panel of the display. Any byte outside the lim-
its of “lower ASCII” is simply represented as a period (or dot, or decimal point – take your pick).

The hexadecimal E character is a binary 1110 and, knowing (as you now should) that this byte represents the start of a
three byte UTF-8 character sequence, you realize that you should interpret the sequence 0xE0B899 as one character.

In the three tables below, the different script segments (Thai, Hindi, and Hebrew) are expanded to show each individ-
ual byte (in hexadecimal) on the first row. Their UTF-8 binary representation is shown in the second row as it is stored
in memory and on disk.

Row three in each example shows the portions of the UTF-8 bit stream representing the actual Unicode values, while
the fourth row arranges them in their normal single or double byte notation. Row 5 shows the Unicode values repre-
sented by those bytes, while the sixth shows the Latin keys used to enter these characters with Input Method Editors as
described in the previous Design Note Exploring Complex Text Layout.

Thai (Unicode Plane u+0E01-0E7F) Text Sample

The nineteen bytes (four character cells in green) of the Thai text segment น้ี คือ beginning at 0X094A are:

In UTF-8 format, any byte beginning with a ‘1’ is part of a multi-byte character. Two or more leading ‘1’ bits indicate
the first byte of such a group; any byte beginning with ‘10’ is a continuation byte. In the first byte, the number of lead-
ing ‘1’ bits indicate the total number of bytes in the character.14

Thus, when packaged as a UTF-8 stream in memory or on disk – shown as a hex dump in line one and as the equiva-
lent twenty-four bits in line two – the sixteen bit Thai Unicode character น (U+0E19) is extracted from the UTF-8 rep-
resentation into groups of 4, 6, and 6 bits as shown in the third line.

What is significant to note in this example is that the Thai base character น and its two diacritics (a vowel and a tone
mark) are stored separately in memory as they were entered. Thus, it is only on screen or in print that we see them oc-
cupying a single character cell as the composite น้ี. Thai script is therefore considered to be ‘complex.’ The reality,
however, is that this situation is really no different than typing a French word having the letter á, except for the fact
that, rather than storing the letter ‘a’ (U+0061) and the acute accent ´ (U+00B4) separately, they are converted on input
to the single á (U+00E1) character.

Note also in this Thai sample that the fourth character cell consists of only one byte (the tenth) and is an example of
how many “alphabets” (or the “modified Abjad” in this case) share non-alphabetical characters with the Latin script.

13 This particular view was made using the Linux Bless utility, but any other hex viewer or editor should suffice.
14 This scheme facilitates efficient determination of cursor movements as well as deleting and backspacing, which users expect to

work on character cells, as opposed to individual elements. Applications permit navigating those elements in a variety of ways.

EXPLORING UTF-8 FOR DATA STORES PAGE 11 OF 13 ANTIKYTHERA PUBLICATIONS

E0 B8 99 E0 B8 B5 E0 B9 89 20
11100000 10111000 10011001 11100000 10111000 10110101 11100000 10111001 10001001 00100000
 0000 111000 011001 0000 111000 110101 0000 111001 001001 0100000
 00001110 00011001 00001110 00110101 00001110 01001001 00100000
 u+0E19 (3609) u+0E35 (3637) u+0E49 (3657) u+20(32)

 o = น u = ี h = ้ space

E0 B8 84 E0 B8 B7 E0 B8 AD
11100000 10111000 10000100 11100000 10111000 10110111 11100000 10111000 10101101
 0000 111000 000100 0000 111000 110111 0000 111000 101101
 00001110 00000100 00001110 00110111 00001110 00101101
 u+0E04 (3588) u+0e37 (3639) u+0e2D(3629)

 8 = ค n = ื v = อ

Hindi (Devanagari Unicode Plane u+0900-097F) Text Sample

The initial sixteen bytes (of twenty-eight) of the Hindi text segment दि�नAी beginning at 0X0973 are:

The Devanagari script also uses three bytes to represent each character in UTF-8. Of interest here is that, while the
stored order in memory is the same as the entry order, the rendering order of the first two characters is exchanged, in
this case because the ीी vowel always precedes its associated consonant.15

Hebrew (Unicode Plane u+0590-05FF) Text Sample

The initial fifteen bytes (eight character cells) of the Hebrew segment שפת עכרית beginning at 0X09A5 are:

Although the Hebrew characters are stored sequentially as they are entered, they are displayed and printed in right-to-
left order as would be expected with any Unicode blocks in the U+0590-08FF range.

The Bottom Line: with very few exceptions, although LibreOffice needs an awareness of script and language related
differences, it doesn’t need to care about the arbitrary and obsolete ‘Asian’ and ‘Complex’ classifications currently re-
sponsible for many of its quirks. The Input Method handled all these examples.

This concludes the introduction to the Unicode UTF-8 transformation format. The next (fourth) Design Note in this
series is “Evaluating Fonts for use in Multi-Lingual Documents.” While fonts may not obviously seem to be the con-
cern of database custodians, the very broad interpretation of “Documents” exposes many ways that data can be lost or
distorted. As a database designer/maintainer, you need to be able to recognize and have an idea how to react to some
common symptoms that crop up in the migration to your new multi-lingual, multi-script database.

15 … as explained in the earlier document in this series “Exploring Complex Text Layout” on page 25.

EXPLORING UTF-8 FOR DATA STORES PAGE 12 OF 13 ANTIKYTHERA PUBLICATIONS

E0 A4 B9 E0 A4 BF E0 A4 A8
11100000 10100100 10111001 11100000 10100100 10111111 11100000 10100100 10101000
 0000 100100 111001 0000 100100 111111 0000 100100 101000
 00001001 00111001 00001001 00111111 00001001 00101000
 u+0939 (2361) u+093F (2367) u+0928 (2344)

 h = � i = दिी n = न

E0 A4 A6 E0 A5 80 20
11100000 10100100 10100110 11100000 10100101 10000000 00100000 Sixteen Bytes displayed
 0000 100100 100110 0000 100101 000000 0100000 in Six Character Cells
 00001001 00100110 00001001 01000000 00100000
 u+0926 (2342) u+0940 (2368) u+20 (32)

 d = A I = ीी space

D7 A9 D7 A4 D7 AA 20
11010111 10101001 11010111 10100100 11010111 10101010 00100000 Fifteen Bytes displayed
 10111 101001 10111 100100 10111 101010 0100000 in Eight Character Cells
00000101 11101001 00000101 11100100 00000101 11101010 00100000
 u+05E9 (1513) u+05E4 (1508) u+05EA (1514) u+20 (32)

 a = ש p = פ = , ת space

D7 A2 D7 9B D7 A8 D7 99 D7 AA
11010111 10100010 11010111 10011011 11010111 10101000 11010111 10011001 11010111 10101010
 10111 100010 10111 011011 10111 101000 10111 011001 10111 101010
00000101 11100010 00000101 11011011 00000101 11101000 00000101 11011001 00000101 11101010
 u+05E2 (1506) u+05DB (1499) u+05E8 (1512) u+05D9 (1497) u+05EA (1514)

 g = ע f = כ r = ר h = ת = , י

Other Publications Antikythera Publications

More information and sample pages at:
www.AntikytheraPubs.com

In addition to an ongoing series of Database Design Notes, Antikythera
Publications recently released the book “Business Database Triage” (ISBN-
10: 0615916937) that demonstrates how commonly encountered business
database designs often cause significant, although largely unrecognized,
difficulties with the development and maintenance of application software.
Examples in the book illustrate how some typical database designs impede
the ability of software developers to respond to new business opportunities
– a key requirement of most businesses.

A number of examples of solutions to curing business system constipation
are presented. Urban legends, such as the so-called object-relational im-
pedance mismatch, are debunked – shown to be based mostly on illogical
database (and sometimes object) designs.

“Business Database Triage” is available through major book retailers in
most countries, or from the following on-line vendors, each of which has a
full description of the book on their site:

CreateSpace: https://www.createspace.com/4513537

Amazon:

www.amazon.com/Business-Database-Triage-Frank-Oberle/dp/0615916937

EXPLORING UTF-8 FOR DATA STORES PAGE 13 OF 13 ANTIKYTHERA PUBLICATIONS

http://www.amazon.com/Business-Database-Triage-Frank-Oberle/dp/0615916937
https://www.createspace.com/4513537

	Definitions and Concepts
	Language
	Script
	The Relationship between Language and Script
	Characters and Character Cells

	Unicode (ISO/IEC-10646) Code Point Representations
	Unicode Transformation Formats (UTF)
	One Byte UTF-8 Representations (7 content bits): Decimal values from 32 through 127 (96 code points)
	Two Byte UTF-8 Representations (11 content bits): Decimal values from 128 through 2,047 (1,920 code points)
	Three Byte UTF-8 Representations (16 content bits): Decimal values from 2,048 through 65,535 (63,488 code points)
	Four Byte UTF-8 Representations (21 content bits): Decimal values from 65,536 through 1,114,112 (1,048,577 code points)
	One byte UTF-8 Representation – Details
	Two byte UTF-8 Representation – Details
	Three byte UTF-8 Representation – Details
	Four byte UTF-8 Representation – Details

	Review – Characters and Character Cells
	Implications of UTF-8 on Database Schema Design
	Boundary Conditions and Column Sizing

	Back from UTF-8 to Unicode
	Thai (Unicode Plane u+0E01-0E7F) Text Sample
	Hindi (Devanagari Unicode Plane u+0900-097F) Text Sample
	Hebrew (Unicode Plane u+0590-05FF) Text Sample

